Operational Chromaticity, Coupling, and Tune Feedback for RHIC Run 7

Outline

- (Very Brief) results from Run 6
 100 GeV (one slide)
- Issues for 'Tune Feedback'
- 90 degree phase jumps
- Mains Harmonics
- Chromaticity
 - what we think we've learned
 - proposal for Run 7
- Conclusions, plan for Run 7

Issues for Tune Feedback

- Dynamic Range done
 - ~180dB (or more) required
 - solution Direct Diode Detection (3D) AFE
- Coupling done
 - drives tune feedback loop unstable
 - solution continuous coupling measurement and feedback
- 90 degree phase jumps in the works
 - digitizer clock loses synchronization
 - solution fit phase to chirped BTF
- Mains Harmonics in the works?
 - direct excitation of betatron resonance by high harmonics of power supply frequencies
 - mechanism is not yet understood
 - amplitude is ~70dB above 3D AFE noise floor during ramping
 - solution??? just live with it?
- Chromaticity in the works
 - modifies Beam Transfer Function portion of overall loop gain
 - affects system stability, tracking ability,...
 - solution continuous chromaticity measurement and feedback

System Block Diagram for RHIC Run 6

0.67

0,68

0,69

0.70

Blue Hor/Ver

Tune - Hor - 0.7048 : Ver - 0.7048Prev: Tune - Hor - 0.6948 : Ver - 0.7048

H - Jun 26 15:18:44 2006 - Fill 08122

H - Jun 26 15:50:12 2006 - Fill 08122

V - Jun 26 15:50:27 2006 - Fill 08122

Help

Jon Laster's

vamplitude (Y1)

uphase (Y2)

Setup Data Display Phase

End tune: 0.715

Stop Data Collection

■ Blue hor ■ Blue ver ■ Yellow hor ■ Yellow ver

Start tune: 0.7

Desired planes

Begin Data Collection

Mains Harmonics

- direct excitation of betatron resonance by high harmonics of power supply frequencies
- mechanism is not yet understood
- large amplitude
 - ~40dB above 3D AFE noise floor during injection and store (~1 μ)
 - ~70dB above 3D AFE noise floor during ramping (~30μ)
- three definitive measurements
 - increase/decrease coincides with ramping supplies
 - coupling moves harmonics into vertical
 - main dipole 12 phase power supply tweak modifies spectrum
- No obvious improvement with additional filtering added for 250GeV ramps (but don't remove it!)
- Plan???? live with it

RF loops close, IPM and Artus kicking (!!!)

accramp (?)

main dipole ramping supply turns on

Chromaticity – what we learned from 250GeV

- Weak sensitivity to chrom with 245MHz PLL
 - linewidth is dominated by Nηdp/p
- Much stronger sensitivity with BBQ two effects
 - amplitude response is increased/diminished
 - phase slope changes
 - both affect overall loop gain what we have to stabilize
- Chromaticity too large
 - loop gain becomes too small, can't track fast tune changes
- Chromaticity too small
 - 3D AFE is peak detector, sensitive to 'micro-instabilities'
 - BBQ becomes unstable, repeatedly loses and regains lock
- Acceptable range for BBQ is only a very few units

Blue Ring 250GeV ramp

horiz I and Q

tunes and beam current

More on Chromaticity Measurement

- General statement tune measurement quality of BBQ is equal to that of 245MHz PLL (or better)
- But, BBQ is in coherent spectrum, more sensitive to
 - Artus kicks
 - IPM kicks
 - chromaticity
 - beam noise' in general
- With kicks off and chromaticity controlled, expectation is that quality of chromaticity measurement will be equal to (or better than) what we got from 245MHz PLL
- This is sufficient for chromaticity feedback
- Alternative measurement methods are under active investigation, will be tested on SPS in late September
 - advantage is that they are non-perturbative

Alternative Measurement Methods

- "Continuous head-tail" using BBQ
 - add a second DAQ channel, looking at reversed diode
 - pickup is a differentiator, first channel (diode in normal orientation) sees head of bunch, second channel sees tail of bunch
 - look at amplitude and phase of tail relative to head during continuous excitation
 - brief study done parasitic to blue beam commissioning at start of Run 6
 - problem? dependence on synchrotron frequency

Multi-carrier excitation

- first proposed by Hermann Schmickler (2001?)
- Measure linewidth by exciting beam on both sides
- problem? response shape is not what is expected?

Conclusions and Run 7 Plan

- Improve mains harmonics situation (if possible)
- Fix to phase jumps is in the works
- Next obstacle to operational TF is chromaticity stabilize loop gains
- Proposal Run 7 commissioning similar to Run 6, except this time implement chrom feedback rather than coupling feedback (easier?)
 - stabilization at injection of tune, coupling, and chrom drifts behavior is repeatable, so compensate. Helpful both for BBQ and injection setup in general (time saving during turn-around) (also needed for Jon Laster's phase jump correction)
 - stabilize loop gains in addition to chrom feedback, add 'sigma loop'
 - study snapback, compensate if possible (more stones?)
 - transition turn off chrom feedback just before jump, back on when 'measurement valid'
 - Chromaticity application improvements
 - more robust 'error' algorithm
 - resolve sign ambiguity, if possible
 - explore frequency and amplitude of radial modulation
 - Integration with Controls and Magnet system

backup slides

90 degree phase jumps

- In principle digitizing and processing phases should remain locked
- In 245MHz PLL the gate array clock ran at 122MHz, would sometimes drop a sample
 - solution was a combination of hardwired reference and DSP correction software (not possible with BBQ)
- In BBQ we are working at audio
 - there should be no problem maintaining clock synchronization
- Problem seems to appear most frequently with fresh beam when returning to injection
- Tried switching NCO clock from 28MHz analog LLRF piped over from 1004 on heliax to V124 RF output
 - no obvious improvement

12 phase power supply balancing

- At injection, tweak one phase of 12 phase power supply
- Causal relation was observed with pattern of mains harmonics
- The tweak was large 150μsec, or ~3 degrees at 60Hz
- Pattern changed, but total mains harmonics power remained constant
- Conclusion not likely to be eliminated by better balancing
- Investigating other possibilities
- This phenomenon is not understood

elog entries – head-tail chrom study

initial

up 2

up 4

Jp 6

24

back to init

down 1

down 2

